
Porting Pan I to Allegro COMMON LisP*

Darrin J. Lane

September 6, 1988

Abstract

This document describes the process of porting Pan I from Franz
Lisp to Allegro COMMON LISP. It focuses on issues relevant to Pan,
but is intended to supply guidelines on porting any large Lisp system.
The steps taken to translate the code were designed to keep the Franz
implementation functional while the Allegro implementation was being
developed. Three techniques were used. Franz code was rewritten to be
compatible with both Lisps. Franz macros were introduced to duplicate
Allegro functionality. Lastly, conditional compilation was used to allow
the coexistence of both Franz and Allegro versions of code in situations
that proved too cumbersome for the first two techniques.

1 Introduction

Pan I is a multilingual language-based editing and browsing system devel­
oped at the University of California, Berkeley[2],[3). The system was orig­
inally implemented in Franz Lisp[4). This document presents the process
by which it was ported to Allegro CoMMON LISP[l]. The decision to port
was based on the need for greater efficiency with the forthcoming addition
of semantic analysis 1 . It was also felt that CoMMON LISP would give us a
wider user community and greater portability. Throughout this paper Franz
will refer to Franz Lisp and Allegro to Allegro CoMMON LISP.

Early during the planning stages of the port it was decided that the
Franz version of the code would be kept in working order as long as possible.

•sponsored by the Defense Advanced Research Projects Agency (DoD), monitored
by Space and Naval Warfare Systems Command under Contracts N00039-84-C-0089 and
N00039-88-C-0292 and by the Bell Communications Research Full-Time Graduate Study
Program. ·

1 Robert Ballance is currently working on Pan's semantic analysis phase.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
06 SEP 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Porting Pan I to Allegro COMMON LISP

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document describes the process of porting Pan I from Franz Lisp to Allegro COMMON LISP. It
focuses on issues relevant to Pan, but is intended to supply guidelines on porting any large Lisp system. The
steps taken to translate the code were designed to keep the Franz implementation functional while the
Allegro implementation was being developed. Three techniques were used. Franz code was rewritten to be
compatible with both Lisps. Franz macros were introduced to duplicate Allegro functionality. Lastly,
conditional compilation was used to allow the coexistence of both Franz and Allegro versions of code in
situations that proved too cumbersome for the first two techniques.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

At that point we envisioned making some of the compatibility changes to
the existing system, but would then "throw the switch" to Allegro leaving
Franz behind forever. Unfortunately, this would have also left us without
a functional Pan for an indeterminate amount of time. We were unhappy
with this prospect, but did not see any alternative. Later, as the project
progressed it became evident that through the use of a few simple techniques
we could port to COMMON LISP and still maintain an efficiently running
Franz version. In fact, the same source code can now be used to generate
both Franz and Allegro versions of Pan.

Three techniques were used to port the system without allowing it to be
nonfunctional for long periods of time: (1) code was rewritten to be com­
patible with both Lisps, (2) complex macros were used to extend Franz to
include large amounts of Allegro functionality and (3) conditional compi­
lation allowed the coexistence of both Franz and Allegro versions of code.
Although, changes to the system can most easily be classified by the primary
technique involved, many required a combination of methods to achieve the
desired result. Secondary techniques are noted accordingly throughout the
report.

This document is organized in the following manner. Section two ex­
plains what preparation was necessary before the port. The third, fourth
and fifth sections discuss the translation techniques given above. Sections
six through eight present the major translations necessary. Section nine dis­
cusses enhancements made to the system during the port. The tenth section
explains functionality lost in the port. Section eleven summarizes some of
the outcomes of the port. Finally, section twelve provides some concluding
remarks.

It is assumed that readers of this document are familiar with Franz Lisp
and Allegro COMMON LISP and have read both Pan I: An Introduction for
Users[2] and The Architecture of Pan I[3].

2 Getting Started

The first two months of the port were dedicated almost entirely to famil­
iarizing myself with Pan and the rest of my working environment. Since
I was not the author of the system, there were many things I needed to
learn before I could begin translating the code. Bringing myself up to date
on a project that had been evolving for upwards of three years was quite
a challenge. First, I read the COMMON LISP manual [5] in order to gain

2

exposure to the functions available in the language. I had programmed in

Lisp, but I was not experienced with Lisp systems programming. A work­

ing knowledge of nearly every function provided by both Lisps was required

and reading the manual seemed like a step in that direction. Next, I read

the Pan documentation, experimented with the system and explored the

source files in order to learn about Pan itself. From these efforts I gained

familiarity with the coding style and some perspective on the user's view of

Pan. During this time I also met with other members of our research group

to ask questions and to discuss issues relevant to the port. These meetings

began to provide me with a "feel" for the code and the system as a whole

that would have taken a great deal of time to acquire on my own. By the

end of this adjustment period I had developed a list of porting issues and

had begun making the first changes to Pan.

3 Franz Code Rewrites

3.1 Cleanup

The first series of Franz rewrites were intended to reorganize the system

in preparation for the port. Code was rewritten to remove unnecessary

functionality, reduce complexity where possible and standardize conventions.

While examining the source code it was discovered that the fully general

functionality provided by two modules was not utilized. In the first instance,

a module devoted entirely to the construction and maniplation of variable

length strings had been developed. Variable length storage of strings is nec­

essary when transforming user selections to strings and copying edit buffer

text lines for regular expression searching. In these situations a buffer of suf­

ficient size is allocated once and reused by overwriting it and marking the

end. To eliminate the need for this "vstring" module, conditional compila­

tion was used to implement the storage with fill pointer arrays in Allegro.

The Franz system was then modified to fake the fill pointer capability by

using a null character to mark the end of the string within a standard array.

Finally, the "vstring" code was removed from the system to avoid unneces­

sary effort in porting. Another overly general and under-used facility allowed

the user to provide the system with a string that would specify the format

for a status line. A set of functions had been written to interpret the format

string and alter the display of the status line accordingly. This was done

elegantly, but the status line was very rarely used. In addition, with the

advent of SunView's panel display, this functionality was obsolete. Most

3

of the information available through the status line was now displayed in
the panel of the viewport window. A command for displaying a statically
formatted string of the remaining information was written and the rest of
the code was removed.

Although Pan had been written primarily by one person, many cod­
ing styles could be found in the implementation. This was due to the fact
that Franz Lisp itself had changed quite dramatically during the three years
of Pan evolution. For example, large portions of the system existed be­
fore Franz had a packaging capability. Early naming conventions showed
an attempt to divide up the name space by prepending functions with the
module name and an exclamation point. The final phase of the cleanup
(which continued throughout the entire port) was directed towards updat­
ing and standardizing conventions such as these, in addition to improving
the general appearance of Pan's code. Files, functions and variables were
renamed to more accurately reflect their purpose. Comments were added
as the functionality of code was understood. Lastly, the require and export
lists of each module were updated to correctly reflect the state of the system.

3.2 Compatibility Changes

As mentioned earlier, compatibility with Allegro was increased by rewriting
Franz code to be compatible with both Lisps. This phase provided the ideal
environment for "getting my feet wet." At first, small, isolated pieces of code
were modified, but later as my knowledge of Pan grew, larger sections were
rewritten. Starting off slowly meant being able to recover from mistakes
easily, which was essential for experimenting with and learning about the
system.

The following is a list of the compatibility changes:

• Explicit references to the ports poport, piport and errport were
removed, since the functions format, read and warn use them as the
default.

• Uses of the functions tyo, tab, terpri and msg were replaced exclu­
sively with format.

• Compiler directives which toggle macro compilation and declare spe­
cials were removed whenever possible. Those that remained were in­
corporated into the Franz extension package.

4

• Since we had chosen to use a case insensitive version of Allegro, many

functions were renamed to avoid clashes.

• "Setting" functions such as addhash and vset were changed to setf's

on the accessor functions.

• Uses of the macro loop were changed to do and do•. Although a loop 2

macro is also available for Allegro, it was felt that the "do" iteration

styles were more appropriate within a Lisp system.

• The function alphalessp was replaced with string< where it was

used on strings.

• Since Allegro offers no fixnum specific operations, the fixnum operators

<t, >t, <=t, >=t, =t, minus, plus and times were replaced with the

generic<,>,<=,>=,=,-,+ and *• respectively. Efficiency was lost with

this change, however, so Franz macros were used to alias the fixnum

specific operations by their generic counterparts. This was possible

since Pan uses fixnums for all its mathematical calculations. The

Allegro version of Pan will have to wait to regain the lost efficiency

until appropriate compiler switches are made available.

• The function concat was replaced by an intern applied to format.

For example, forms such as (concat , sym i) would be changed to

(intern (format nil "sym-D" i)).

• Uses of the function if with the keywords then and else were rev.'Tit­

ten with when, unless, if, cond and case. The Allegro function

excl: if* was added to the extension package and used in some cases

as well.

3.2.1 Defstructs

The code for defining and manipulating structures required several changes

to be compatible with both Franz and Allegro. For that reason it is explained

in more detail here. First, the defstruct keyword argument :cone-name

was used to ensure that all structure accessors would be concatenated with

the structure name. Uses of the accessors were then changed to contain

the concatenation. In our Franz system the accessor names had not been

2The loop macro referred to here has the keywords for, then, return, etc. It is not

the standard COMMON LISP loop which generates an infinite loop.

5

concatenated consistently, since no specification of the :cone-name argu­

ment defaults to no concatenation. However, in Allegro the default is to use

the name of the structure. By explicitly requiring the concatenation both

Lisps exhibit the same behavior. In the future :cone-name references can

be removed from the Allegro system. Next, calls to the "make" functions

created by defstructs were changed to use the slot names only as keyword

arguments. Franz accepts either symbols or keywords, but Allegro insists

upon the latter. Finally, since Allegro does not associate "alter" functions

with structures, their uses were changed to setfs on the slot accessors.

After the above changes were completed the structure manipulations

were compatible in both Lisps; however efficiency considerations required

one final alteration. Creation of the data structures necessary for managing

text happens frequently within inner loops of Pan and therefore cannot

afford the time it takes to match up keyword arguments. To eliminate this

overhead :constructor was used to declare a constructor function with only

required arguments. The most commonly initialized slots were set by the

call to the constructor and the remaining ones were initialized using setfs

on the accessor functions.

4 Macro Introduction

In order to keep the Franz version of the system functional during the port,

macros were introduced into our extension package3 to increase compatibil­

ity with Allegro. These macros defined Allegro constructs in terms of those

that exist in Franz. This technique had several advantages. First, macros

allowed the Franz system to remain efficient. Second, by introducing Allegro

constructs into a running system they could be tested and debugged imme­

diately. Finally, code duplication was kept to a minimum, since creating

Franz and Allegro versions of code was unnecessary.

This method employed three distinct types of macros. What follows is an

explanation of their differences along with some examples to provide insight

into how the macros were used in practice.

The first type of macro simply equates the function or macro definition

of two symbols. In this way Allegro names could be attached to Franz

constructs. For example, the form (defnewname consp dtpr) 4 defines the

3Many of the macros in Pan's extension package were written by Jacob Butcher.

4 ddnewn.am.e is also a macro in the extension package. It defines the first argument in

terms of the second.

6

Allegro name consp as an alias for dtpr. Notice that the two functions

have the same definition in both Lisps. However, renaming need not be

confined strictly to functions having equivalent behavior. Similar behavior

will suffice if the usage of the newly defined name is limited to cases covered

by the original function. For example, aref can be defined in terms of vref

if it is used only on vectors. Section 1 of Appendix A contains a table listing

the aliases defined with defnewname.
In situations where more than renaming was needed, Allegro constructs

were defined by cleverly combining existing Franz functionality. For example
the following macro was used to define the COMMON LISP function merge.

(defmacro merge (result-type seq1 seq2 comp-pred)
'(insert (car ,seq1) ,seq2 ,comp-pred t))

Notice that this definition does not support the :key keyword argument.

Furthermore, it will operate only on lists, not general sequences. As with

renaming, an exact match between the Franz and Allegro functionality is

unnecessary. The uses of the function dictate the level at which the equiva­

lence can be assumed. A large amount of effort was saved by implementing

only functionality actually used by the Franz system. Section 2 of Appendix

A contains the macro definitions from our Franz extension package used in

this technique.
The final class of macros used in the port provided Franz functionality to

Allegro. This technique was applied only to the functions memq, remq, rassq,

assq and delq. These deserve special treatment for several reasons. First,

the functions are easily written in Allegro using member, remove, rassoc,

as soc and delete, respectively with a :test argument. Second the Allegro

functions are not easily written in Franz. Lastly, the macros can be removed

and replaced with their definitions when all ties with Franz are broken. As

a general rule however, this is an inappropriate technique for porting Franz

code to Allegro and is therefore not recommended.

5 Conditional Compilation

During the port, keeping both Franz and Allegro versions of certain code

was necessary. Often it is simply easier to write Allegro code from scratch

than to rewrite Franz code to be compatible with both Lisps. For example,

the paradigms for dealing with strings and file input/output differ greatly

between the two Lisps. Conditional compilation was used to provide dupli-

7

cation in these situations. Throughout the rest of this paper areas of the
port which utilized this translation technique are noted.

6 Characters /Fixnums

Franz characters are represented as fixnums. COMMON LISP, on the other
hand, has a separate character type. An examination of the Franz system
revealed that character/fixnum objects were used in two distinct fashions:
as a representation for keystrokes and in comparison operations with the
cursor character. This section explains how the implementation was changed
to allow COMMON LISP characters to be used in both of these instances.

6.1 Pan's Internal Character Representation

Before going on to discuss keystrokes and the cursor character it is important
to understand what keeps these objects separable. At the very lowest level
of Pan's text representation are vectors of 16-bit objects. Each 16-bit value
represents a single character. Eight bits are used for the ASCII value of
the character and four bits each are used for the mode and font information.
Keystrokes are the user's input to the system and are converted to the inter­
nal representation upon insertion into a buffer. The cursor character can be
examined with the function Cursor-Character. This function converts the
internal 16-bit representation to a standard character object. Conversions
in both directions are only concerned with the eight-bit ASCII codes. No
comparisons based on the mode or font information are supported, so these
bits can be ignored. Furthermore, none of the Lisp code places any interpre­
tation on the mode or font bits. The C code of Pan is solely responsible for
setting and examing these bits. More will be presented on this topic during
the discussion of the foreign function interface to C.

6.2 Keystrokes

Keystrokes are Pan's internal representation for keyboard events. Objects of
this type are created when the user presses a key or when the system parses a
user's keystroke specification. These specifications are strings used in setting
key bindings. Three types of conversions are used in manipulating keystroke
objects. In the first case keystrokes are converted to the specification string
format for announcement to the user, as in the Emacs minibuffer. The
second conversion maps keystrokes to the internal character representation.

8

This occurs as characters are inserted into a buffer using Self-Insert.
Lastly, keystrokes are converted to :fixnums based on their ASCII values.
The command dispatch mechanism then uses these :fixnums for access into
a keymap vector.

The following is a list of the changes needed to switch the keystroke
representation from character/fixnum to the COMMON LISP character:

• Franz macros, such as char=, graphic-char-p and char-code, pro­
vided an abstraction for treating character/fixnum objects as char­
acters. These macros were moved to the extension package to avoid
collision with Allegro counterparts. See Appendix A for the macro
definitions which provided the character abstraction.

• Allegro functions for mapping between keystrokes specifications and
keystroke objects were written and introduced into the system with
conditional compilation.

• The low level macro for mapping a COMMON LISP character to the Pan
character representation was also introduced with conditional compi­
lation.

• Existing Franz code was rewritten to include the necessary conversions
between characters and fixnums for keymap accessing. This involved
no more than adding calls to char-code and code-char in appropri­
ate places. No conditional compilation was needed here, since these
macros were available in the Franz extension package. Of course, they
did nothing more than extract a :fixnum from a :fixnum or coerce a
:fixnum to a :fixnum, but this was enough to allow the same source
code to function in both Lisps.

• Finally, the C routine which reports keyboard events to Lisp was al­
tered to pass COMMON LISP characters to the Allegro system. Condi­
tional compilation allowed Franz to continue receiving character/fix­
num objects. See the section on the foreign function interface for a
description of these changes.

6.3 The Cursor Character

Editing operations move the cursor from place to place within a buffer and
will occasionally need to know what character is beneath it. As mentioned
above, the only access to the character under the cursor is through the
function Cursor-Character. This function is responsible for converting

9

• I

the Pan character to a representation which the user may examine. Once
in that representation there are two common uses for the object. In the
first case the syntax class of the character is retrieved for determining if a
special action is needed. For example, when a character of class : rbracket
is inserted into a buffer, the matching left bracket may be shown to the user.
The second situation arises when a character is tested for membership in the
string :indentation-chars.

Switching the Allegro representation of the cursor character to a char­
acter object required the following changes:

• The low level macro for mapping a Pan character to the COMMON LISP

character representation was introduced with conditional compilation.

• In order to retrieve the syntax class of a character its ASCII value must
be extracted for indexing into a vector. Functions for performing this
operation were altered to use char-code on the character arguments.
In some areas where efficiency was a problem, the bits for the ASCII
value were taken directly from the low level representation to avoid
the conversion to a COMMON LISP character.

• The final step was to use the function position instead of char- index
to check character membership in the string :indentation-chars. A
macro defining position in terms of char-index was also added to
the Franz extension package.

7 Strings

The most common way to deal with strings in Franz is to perform operations
on lists of characters, which are of course just lists of fixnums. Objects of
type string have appeared in later releases, but the majority of our system
was built before these capabilities existed. Even with the availability of
a few string operations in Franz, it is clear that the paradigms for string
manipulations between the two Lisps are quite different. COMMON offers a
wide range of string manipulations, whereas Franz relies heavily on a few
primitive functions. For this reason almost all of the string handling code
had to be rewritten in Allegro. The following two sections explain how the
four operations implode, exploden, tconc and leone were eliminated from
the system and replaced with CoMMON LISP string operations.

10

7.1 Implode and Explode

In Franz an object of type string exists primarily in three forms: as a sym­
bol whose print name is the desired string, as a sequence of characters sur­
rounded by double quotes and as a list of :fixnums representing the ASCII
value of each character. While the first two representations offer a means
for input and output of strings, manipulating these objects in more inter­
esting ways requires that the they be "exploded" into the list form. Once
in that form list operations can be applied. The functions exploden and
implode are used to convert the symbol to the list and the list to the symbol,
respectively5 • Our Franz implementation relied heavily on this paradigm for
searching strings and translating them back and forth between internal rep­
resentations and user readable form. To illustrate the use of these functions
in our system some examples follow. The code below was not taken directly
from Pan, but has been written to demonstrate the kinds of manipulations
we perform on strings.

Example 1: Searching strings for breakpoints is an important function­
ality used by the apropos facility and the file system interface. The following
Franz function will search a string or symbol for the final occurrence of the
character "/" and return a symbol composed of all subsequent characters:

(detun trom-tinal-slash (string-or-symbol-arg)
;; Bind reverse-list to the destructively moditied
,, reverse ot the exploded list ot ASCII values.
(let ((reverse-list

(nreverse (exploden string-or-symbol-arg))))
,, Use memq to tind the tirst location ot the slash.
,, This is the last location in the unreversed list.
,, Ditterence reverse-list with the portion containing
,, the slash to extract the desired sublist. Lastly,
,, destructively reverse the sublist and implode the
,, result, returning the symbol.
(implode (nreverse (lditt

reverse-list
(memq #\/ reverse-list))))))

In Allegro the following will perform the same function with both the
argument and return value as strings:

6 There a.re many more "plode" functions. The variations allow control over how special

characters are handled and whether the return values contain symbols or strings. The two
given here will suffice for this discussion.

11

(detun trom-tinal-slash (string-arg)
;; Bind slash-pos to the position ot the tinal
,, slash within string-arg or nil it not found.
(let ((slash-pos

(position #\/ string-arg :trom-end t)))
,, It a slash was found return the string containing
,, all characters atter its position; otherwise
,, return the entire string.
(it slash-pos

(subseq string-arg (1+ slash-pos))
atring-arg)))

Example 2: In many places throughout the system a string must be
translated from a user readable form to an internal form or vice versa. Func­
tions of this sort iterate over the characters of the string building the new
representation. The Franz function below transforms a string or symbol into
a list. Ranges, indicated by a dash between two characters, are consed into a
dotted pair of ASCII values. All other characters are simply transformed to
ASCII and appended to the list. For example, "a-fqr-vc" becomes ((97 .
102) 113 (114 . 118) 99). Mappings of this kind are used to parse the
user's specification for setting character classes and key bindings. Reverse
mappings also exist for describing these settings to the user.

(detun parse-key-seq-specitication (string-or-symbol-arg)
(do ((exploded-list (exploden string-or-symbol-arg))

;; Initialize the tconc structure.
(result-char-tconc (ncons nil)))

,, Iterate until the list is empty.
((null exploded-list) (car result-char-tconc))
(cond
;; It the remaining list is>= 3 elements long and the
,, second element is a dash then a range is specitied.
((and (>= (length exploded-list) 3)

(= (cadr exploded-list) #\-))
,, Append the dotted pair ot ASCII values to the
,, tconc structure and rebind exploded-list to
,, skip over the processed elements.
(tconc result-char-tconc

(cons (car exploded-list) (caddr exploded-list)))
(sett exploded-list (nthcdr 3 exploded-list)))

,, otherwise just append the value.
(t (tconc result-char-tconc (car exploded-list))

(setf exploded-list (cdr exploded-list))))))

12

The Allegro version of this function produces a list of characters (not

fixnums) that are in reverse order. A final reversing of the elements of the

list is unnecessary, since only the range information need be preserved. For

example, 11 a-fqr-vc 11 becomes (1\c (1\r . 1\v) 1\q (1\a . 1\f)).

(detun parse-key-seq-specification (string-arg)

(let ((len (length string-arg)))
(do ((i 0 (1+ i))

(result-char-list nil))
;; Iterate until the end ot the string.

((= i len) result-char-list)
(let ((curr-char (schar string-arg i)))

(cond
,, It the end ot the string is at least

,, 2 positions avay and the next character

,, is a dash then a range is specitied.

((and (< (+ 2 i) len)
(char= (schar string-arg (1+ i)) #\-))

,, Prepend the dotted pair of characters to

, , the list, incrementing i to skip over

,, the processed characters.
(push (cons curr-char

(schar string-arg (incf i 2)))

result-char-list))
,, othervise just prepend the character.

(t (push curr-char result-char-list)))))))

In order to remove exploden and implode, conditional compilation was

used to install Allegro versions of code that handle string processing. Al­

though writing implode and explode in Allegro would have been trivial the

functionality involving "plodes" was eliminated from the system. This

meant more work, but writing Allegro code to behave like Franz was not the

goal of the port.

7.2 Teone and Leone

Closely related to the problem of "plodes" in Pan were the functions tconc

and leone. They operate on something known as a tconc structure, a cons

whose car is a list and whose cdr is the last element of that list. These

operations can be used to construct a list quickly by appending elements

directly onto it as shown by the second example above. A single element

is appended with tconc, while leone appends an entire list splicing in the

13

elements. 'When all of the elements have been tconced onto the structure,
taking its car yields the desired list.

In situations like the one in example 2, Allegro code was written to use
push for building a list based on some data. If preservation of the order was
necessary a final reverse was applied. Other uses of these functions, how­
ever, were not intended to build a list at all, but were designed to eventually
yield a string. In these cases Franz functions would build up a list with
tconc and then apply "imploding" functions to force the list into its string
form. Allegro counterparts to these functions were written using string con­
catenation as shown in the following example.

Example 3: The following Franz function translates a Unix file expan­
sion regular expression (containing "*" and " . " only) in to a form accept­
able to ed. For example "*. cl" becomes "[-#\space #\tab] [-#\space
I\ tab]*\\ . cl". This code is used to provide matching of file names for
automatic execution and loading mechanisms. The translation is necessary
since Pan uses the Unix regular expression search facility which requires an
ed format.

(defun filename-to-re (string-arg)
(let ((result-tconc (ncons nil)))

;; Iterate until the end of the string returning
,, the resulting list imploded as a string.
(dotimes (i (string-length string-arg)

(implodes (car result-tconc)))
;; Bind curr-char to ASCII value of the i-th character.
(let ((curr-char (getcharn string-arg (1+ i))))

;; Switch on curr-char, tconc-ing onto result-tconc.
(case curr-char

(#* (tconc result-tconc #\[)
(tconc result-tconc #\•)
(tconc result-tconc #\space)
(tconc result-tconc #\tab)
(tconc result-tconc #\])
(tconc result-tconc #\[)
(tconc result-tconc #\•)
(tconc result-tconc #\space)
(tconc result-tconc #\tab)
(tconc result-tconc #\])
(tconc result-tconc curr-char))

(#\. (tconc result-tconc #\\)
(tconc result-tconc curr-char))

(t (tconc result-tconc curr-char)))))))

14

Concatenation of strings provides equivalent functionality in Allegro:

(detun tilename-to-re (string-arg)
(let ((result-string ""))

;; Iterate until the end ot the string

,, returning the translation.
(dotimes (i (length string-arg) result-string)

;; Bind curr-char to the i-th character.

(let ((curr-char (schar string-arg i)))
;; Build up the new string by concatenating the result

,, so tar with a string based on curr-char.

(sett result-string
(concatenate

•string
result-string
(case curr-char

(#\• (tormat nil "[• -A][· -A] ·c"
#\tab #\tab curr-char))

(#\. (tormat nil "\\-c" curr-char))
(t (tormat nil "-C" curr-char)))))))))

Notice that with the addition of Franz macros for taking string lengths,

accessing characters and concatenating strings, the above Allegro function

could be compatible with both Lisps. However, since the Franz function is

more efficient, conditional compilation may be more desirable. This decision

will depend on the application. Currently, Pan has both Allegro and Franz

versions of the code that performs regular expression translation.

8 Foreign Function Interface

In order to achieve the efficiency necessary within an editing environment

Pan has an extensive foreign function interface to C. The C routines handle

such things as the window system and file writing operations. Our system

uses Lisp-to-C and C-to-Lisp calls. Setting up the framework for the inter­

face was not difficult after the Allegro syntax was known; however, getting

C and Lisp to interpret arguments and return values correctly was one of the

most troublesome areas of the port. Because this is another area for which

the paradigms in Franz and Allegro differ greatly, conditional compilation

was used in both the Lisp and C worlds.

15

8.1 Lisp to C

The Lisp code of Pan uses well over 100 functions provided by C. These

functions:

• provide a layer of abstraction between Pan and the window system,

• alter character font and mode information,

• read, write, append and copy files,

• provide functionality needed in lexical analysis, and

• perform regular expression searching.

The majority of these functions (over 80) are dedicated to providing the

window system abstraction.
Defining the necessary interfaces in Allegro required moving the function

binding mechanism from C to Lisp and adding declarations of the argument

and return types. Fortunately, these simple syntactic changes resulted in

the correct installation of about 90% of the Lisp-to-C calls. This included

almost all of the window code and about half of the routines which provided

the other services. Calls falling into this category pass fixnums, strings

or simple arrays and return an integer or no value at all. Because the

foreign function interface handles the translation between the Lisp and C

representations of these types of objects, the code on either side of the

interface required no semantic changes. The remaining 10% of Lisp-to-C

calls were more complicated, performing tasks requiring special types of

arguments and return values. These are explained below.

8.1.1 Traversing the Text Representation

Character painting, file writing, setting font and mode information, perform­

ing lexical analysis and regular expression searching all require traversing

Pan's internal representation of text. Fortunately, Franz-C code had been

written for these purposes when Pan was originally developed. The basic

algorithms for iterating over the Lisp text representation had already been

debugged. Only the methods for converting objects to a C-readable form

had to be installed.
Data representation in Franz and C is quite similar, so few conversions

are necessary for the proper interpretation of foreign objects. However, Al­

legro and C representations differ significantly. For this reason macros for

extracting C-readable data from Lisp structures are provided in the library

16

file lisp.h. By defining our own accessor macros in terms of those in lisp.h
we were able to create Allegro-C code for traversing the text representation.
Unfortunately, debugging the C routines was hampered by a lack of docu­
mentation for the kinds of manipulations we were performing. When lisp.h
failed to provide an answer we would resort to examing a structure with the
Allegro inspector or even printing a raw hexadecimal dump ofthe structure
from C. After some trial and error we were able to converge to the correct
C structure definitions and macros.

8.1.2 Fill Pointer Arrays

During lexical analysis and regular expression searching, fill pointer arrays
are used by Lisp as variable length storage for strings. C is responsible for
copying character values into the array as it traverses the Lisp text repre­
sentation. Several interesting problems were encountered while debugging
these routines.

In regular expression searching the string is used to hold a line of text
copied from within a buffer. The fill pointer array is created in Lisp and
passed to C for destructive modification. The foreign function interface
does not just pass the raw Lisp value, but rather, a valid character pointer,
which can then be used to fill in the characters of the string. When control
returns to Lisp the fill pointer is set to the location of the null character
provided by C. This interface was relatively easy to get correct, especially
when compared to the lexer.

The interface to the lexer in Pan uses a slight variation of the above
scheme. Instead of passing the array across the interface once per lexeme,
the array is created in Lisp and accessed through the function lisp_ value ().
This function is provided as part of the Allegro/C foreign function interface
for direct manipulation Of Lisp objects. It offers none of the argument
checking or translation that occurs when values are passed into C. Therefore,
routines manipulating the array in this case had to extract the character
pointer using pointer arithmetic on the Lisp value. No macros for performing
these calculations are available in lisp.h, so they had to be written from
scratch by inspecting the Lisp structures in Allegro.

8.2 C to Lisp

Although Pan is written primarily in Lisp, events from the window system
are captured in the C code. Lisp handlers are then called to process them.

17

Porting these interfaces required using conditional compilation to introduce
defun-c-callable forms of the function definitions for Allegro. C-callable
functions are identical to normal functions, except that the types of the
arguments must be declared. Once the Allegro functions were C-callable
the actual calls were added to C using the library function lisp_call 0.

The final change necessary was to alter the C event dispatcher to call
the Lisp keyboard handler with a COMMON LISP character object. Again,
lisp.h provided no help, so the macro was written to perform the necessary
conversion. Originally it was written to produce the character representa­
tion explained in lisp.h, however this documentation proved to be wrong.
Only by using the Allegro inspector was the correct character representation
discovered.

8.3 Other Interface Problems

Many of the arguments passed across the foreign function interface in Pan
are boolean values. In Lisp true and false are represented by non-nil and
nil respectively, while in C non-0 and 0 are used. This presents a problem
for functions using booleans, since the Allegro interface provides no trans­
lation for these values. Two macros were written to solve this problem until
the interface is improved. The first translates Lisp boolean arguments to
C and the second translates C boolean return values to Lisp. For exam­
ple, the form (boolean-hack-result foo fix-foo) is a macro call that
defines foo to be a function which invokes fix-foo (a C routine) and then
translates the return value to a Lisp boolean. A similar macro call sets
up the translation for arguments passed to C. These macros can be easily
removed when Allegro augments the foreign function interface to include
boolean translation. No other corrections to the system will be necessary.

The final problem encountered in porting the C/Lisp interface was the
Allegro garbage collector. Franz had a simple garbage collection (gc) scheme
in which values are never moved once created. Allegro, however, does not
make the same guarantee. If C has a pointer into the Lisp world and garbage
collection occurs the pointer may be invalidated. To get around this, Allegro
has a system in which values may be registered in Lisp and accessed in C
with calls to lisp_value(). Fortunately, Pan had been written so that C
keeps very little information about the Lisp world. In fact the only area
of the system that required registration of values was the lexer. The lexer
caches pointers to the first and last text nodes of the buffer region currently
being analyzed, as well as to the fill pointer array mentioned above. To

18

avoid any problems the C gc-after hook was used to update the caches after
every gc with new calls to lisp_value().

9 System Enhancements

9.1 &prompt Argument Types

The Pan command definition facility provides the lambda keyword &prompt
in addition to those normally provided by Lisp. It allows command defini­
tions to include arguments which receive default bindings by prompting the
user. For example:

(Define-Command Echo
(tprompt (user-input "Enter string:"))
:help "A simple command to echo the user input

to the Annunciator line of the active viewer."
(Announce "You typed: -s" user-input))

defines a simple command that echoes a string input by the user. During
the port the syntax of &prompt was expanded to include a type specification
for each argument. The above definition would now be written as follows:

(Define-Command String-Echo
(tprompt (user-string string "Enter string:"))
:help "A simple command to echo the user input string

to the Annunciator line of the active viewer."
(Announce "You typed: -s" user-string))

This allows arguments to have different (user defined) prompters a"::Ltomati­
cally associated with them through the command definition. The argument
list

(tprompt (argl typel stringl) (arg2 type2 string2) ...)

is expanded by the command definition mechanism to

(toptional (argl (prompter-typel stringl))
(arg2 (prompter-type2 string2))
...)

Because &prompt expands to &optional only one of the two may appear
in an argument list. Also, since &optional is required to be the first lambda
keyword in the list, &prompt carries the same restriction.

Typing of the &prompt arguments is handy for allowing the user to
quickly integrate a new prompter into the system. Adding a prompter simply

19

• ;::

requires defining it and augmenting the list of prompters and types. In fact,

this is precisely how pathname objects were added to Pan. When l:prompt
functionality was improved, pathname command arguments were identified
and tagged with the type pathna.me. This new type was then temporarily
associated with the prompter for strings. Later when the Prompt-For-File
command was added, the function which associates a prompter with a type

was changed. With this single alteration all commands which called for the
user to enter a pathname automatically became clients of the new prompter.

9.2 File System Interface

Pan as originally implemented in Franz was tied very closely to the underly­
ing file system. This is not surprising since file handling in Franz is modeled

after the paradigm used by C. Simply porting this code in a purely syntactic
manner to Allegro would have been foolish given the existence of COMMON

LISP pathnames. These objects help to eliminate an application's depen­
dency on a file system, by denoting files in an operating system independent
way. It is, of course, impossible to completely ignore the file system, but
abstracting away as much as possible is desirable. This is especially true
for Pan which is concerned with the editing and presentation of structured
objects. As other repositories besides files become available Pan will want
to take advantage of them as well.

Removing our strong dependency on the file system required carefully
defining the role and use of directories, files, file names and buffer names6 •

Unfortunately the boundaries between these objects were extremely blurred
by their being used almost interchangeably throughout the code. When the

user specified a file with a string it became the file name and the buffer name.
Any of the three values could be used in place of any other. The rewrite

of the file system interface enforces the following distinctions between these
objects:

• file - a pathname used to denote the physical file. This is strictly an
internal representation for file specifications.

• directory- a pathname used to denote a directory within the file sys­
tem. A directory is part of the working environment for commands

executed from within a buffer. Every buffer has its own working di­
rectory.

6 Changes to Pan's file handling were based on design notes by Michael Van De Vanter.

20

• file name - a string used to communicate with the user about files.

A file name is a function of the file (specification) and exists only

to provide the user with a readable form of the internal pathname

rep res entation.

• buffer name- a unique string used to identify a memory resident object

which may be viewed and possibly edited. Notice that this implies a

buffer need not have any secondary storage associated with it.

Distinguishing the role of these objects required rewriting code in four

basic areas of Pan: buffer management, buffer commands, file input/output

and file commands. Pathnames were implemented as strings in the Franz

version and a few of the basic manipulations were installed using macros.

Section 2 of Appendix A contains the macro definitions used to extend

Franz. As usual, conditional compilation allowed divergent code to exist in

both Lisps.

9.2.1 Buffer Management

The buffer structure was expanded to include three new slots: name, file

and directory. The existing file name slot remained only as a printable

representation of the buffer file specification. Code which had previously

manipulated the buffer file name was changed to obey the conventions given

above. Paramount among these changes was the elimination of the ability

to identify a buffer by its file name. Buffers are now identified by their name

and if necessary can also be located through their file. The latter case arises

only when checking to see if a file is being edited before retrieving it from

the file system. Three distinguished buffers, the help buffer, base buffer and

currently active buffer, can also be accessed through special macros.

9.2.2 Buffer Commands

Buffer commands provide such operations as setting the active buffer, allo­

cating viewports to buffers and saving the files associated with them. Com­

mands were rewritten to enforce proper usage of buffer slot information.

Also, commands for creating unique buffer names and scratch buffers were

added. The latter is a demonstration of Pan's new independence from the

file system by providing an editable object that is not associated with any

secondary storage. Finally, now that each buffer had its own working di­

rectory, a command for setting this slot was added and the machinery for

providing a single global working directory was removed.

21

9.2.3 File Input/Output

The input/output module of Pan makes extensive use offile specifications to
perform tilde expansion, check file properties, retrieve user information and
open and close files for reading and writing. It generally serves as a layer
of abstraction on top of the operating system. Conditional compilation was
used extensively in this area to include Allegro versions of file manipulation
functions. Also, during work on this part of the system it was discovered
that the algorithm used by Pan for writing buffer files was unnecessarily
slow. To write a file the following steps were taken:

1. Open the file in Lisp.

2. Pass C a file pointer and a node of the text representation for writing.
pointer.

3. Write the characters contained in the node to the file.

4. If the end of the buffer has been reached go to 6.

5. Go to 2.

6. Close the file in Lisp.

This code had been written very early in Pan's development and did not take
advantage of the ability of C routines to traverse the text representation.
The code was rewritten to use the following algorithm (in Allegro only):

1. Pass C a region of the buffer and the name of a file to write to. A region
is specified as a beginning and ending node in the text representation.

2. Open the file.

3. C traverses the text representation writing all characters within the
region.

4. Close the file and return control to Lisp.

9.2.4 File Commands

File commands provide a second layer of abstraction on top of file input and
output that allow the user to perform high level file manipulations. These
include operations such as visiting, loading, writing, backing-up and check­
pointing files and creating file names from files. Besides altering commands
to enforce proper usage of the buffer slot information, several enhancements
were added as well.

22

The command Prompt-For-File was written and associated with the

i:prompt type pathname. This new prompter primes the user's input string
with the value of the active buffer directory just as in the Emacs mini buffer.
The string is then tilde-expanded and merged with the buffer directory,

ensuring that a complete absolute pathname is created.
List-Files, the command for listing a directory in the help buffer, was

changed to set the buffer working directory. Files selected from the listing
can now be visited with no further specification.

Visit-File was changed to accept an optional argument specifying a
read-only visit. The semantics of a read-only were then refined to ensure

that no backing-up or checkpointing of the file would occur.

9.3 Help System

Pan has an elaborate help facility which automatically documents com­
mands added to the system. The user gains access to the documentation
with apropos and describe facilities. Until recently the apropos mechanism

distinguished the singular and plural forms of its arguments. For example,
requesting apropos information for the keyword "files" would ignore any
entries under "file". The mechanism was altered to look for both entries
regardless of which keyword was supplied.

Another weakness appeared in the description mechanism. When a user
asked for information about a command, the system would print its doc­
umentation string, the arguments it took and whether or not it could be
bound to a menu or a key. However, no information was given about what
those current bindings may have been. The only way to discover the key or

menu binding of a command was to list all of the bindings. Since there are
not that many menu bindings, the user could look through the list quickly.
H that was unacceptable the menus themselves could always be explored.
Looking through the list of key bindings, however, was quite a chore. There
are over 100 default bindings alone. To eliminate the need for examining

the entire binding list to extract a single entry two commands were added.
The first maps key sequence specifications to commands and the second
performs the inverse operation. This information is made available through
the describe facility or may be accessed by invoking the mapping commands

directly.

23

10 Functionality Loss

This section describes functionality of the Franz system that could not be
fully supported with Allegro.

10.1 Error Handling

Error handling within Pan occurs at both the user level and internally.
User errors are detected by the system and signaled with the command
Editor-Error. These are quite common and do not interrupt execution.
Editor-Error simply terminates execution of the current command, prints
a message and returns control to Pan's top level. Errors occurring at the
internal level are caused by mistakes in the system code. These would
normally fall through to the underlying Lisp and put the user into a break
loop. To capture errors of this type the Franz version of Pan rebinds the Lisp
error handlers Y.ERall and Y.ERtpl. At the time an internal error occurs, our
functions are called with arguments explaining the problem. These functions
in turn signal the error to the user and perform any recovery necessary. If
recovery is impossible then the user is advised to reset the system.

Pan makes use of this error handling technique in three situations:

1. Y.ERall is bound to load-error-handler while a file is being loaded into
the running system using the command Load-File.

2. Y.ERall is bound to exec-error-handler during execution of the com­
mand Execute-Lisp-Line, which takes a Lisp form entered by the
user and evaluates it.

3. Y.ERtpl is bound to pan-error-handler at start-up to trap internal er­
rors. This allows the user to be signaled from within the system itself
instead of entering a Lisp break loop.

Allegro does not provide a facility for rebinding error handlers. The first
two cases above have been approximated by using axel: errors at to wrap
the load and eval forms explicitly. This will effectively trap any errors and
allow the user to be signaled. It is only an approximate solution since the
cause of the error is only known by the Lisp system and not by Pan. For
example, during loading it is not possible to detect an error caused by a
nonexistent file from one caused by a problem during the load itself.

The third case above cannot be so easily approximated. It differs from
the first two situations in that no particular form can be wrapped with

24

excl: errorset to trap an internal error. An error of this sort can happen

anywhere throughout the entire system. For now this problem has been

deferred until Allegro is expanded to include a mechanism similar to that of

Franz. Until that time users will find themselves entering break loops when

internal errors occur.

10.2 GC Hooks

Franz provides both before and after hooks into its garbage collection mech­

anism. In Pan these hooks are used to provide a facility for registering

functions to be executed before and after gc. The most common usage of

this facility is to change the mouse cursor to signal the user when a gc is

happening. In Allegro only a gc-after hook exists in Lisp, while both gc­

before and gc-after hooks exist for C foreign functions. Although it would be

possible to build the registration mechanism utilizing the C hooks, it would

be best to wait for Allegro to include them explicitly in Lisp.

11 Porting Outcomes

11.1 System Size

When the port began there were about 18,000 lines of Franz Lisp source code.

It is interesting to note that this number has remained almost unchanged as

a result of the port. Two different implementations of the system now exist

in the space it previously took to store one.

A more significant change can be seen by looking at the size of the system

binaries. The start-up runtime image of the Franz system is 4.3 megabytes,

while the Allegro image is 5.5 megabytes. This can be attributed to both

the added functionality provided in COMMON LISP and the fact that the

Allegro compiler is part of the environment and not a stand-alone program

as in Franz.

11.2 Performance

Currently the system is being run in Allegro with all debugging features

turned on to catch any possible problems. This includes argument checking

at the foreign function interface, printing diagnostic messages and checking

invariants. When these are removed the system is expected to exhibit better

performance than the Franz version with the following exceptions:

25

• File loading in Allegro is much slower due to the extra checking per­

formed by the loader.

• Allegro does not provide a quick way to remove C entry points from

a running Lisp. Pan needs this capability when new language tables

are being loaded.

• As mentioned earlier, the fixnum operations within the system use

general mathematical functions. These run slower than the :fi.xnum

specific operations provided in Franz.

• The garbage collector will have to be tuned for our system.

11.3 Writing Portable Lisp Systems

There are two pieces of advice that I would offer to programmers writ­

ing portable Lisp systems. The first would be to avoid keeping poip.ters

into Lisp from foreign code. Pointers of this sort greatly reduce portabil­

ity by requiring implementation dependent manipulation to avoid garbage

collection problems. The second would be to use abstract data types to

separate different uses of the same base type. For example, in Pan we used

a character abstraction to distinguish fixnums as numbers from :fi.xnums as

characters. ADT's will help to eliminate many of the problems encountered

when moving from a weak type system to a stronger one.

12 Conclusion

This document has explained the process of porting Pan I from Franz Lisp

to Allegro COMMON LISP. By using a combination of code rewriting, macro

introduction and conditional compilation the Franz sources of the system

have been transformed to be compatible with both Lisps. The success of

this technique has shown that an existing system can be ported without

leaving it nonfunctional for long periods of time.

13 Acknowledgements

I would like to thank my advisor, Susan L. Graham, and all the members of

our research group for their help and support. Special thanks go to Chris

Black for helping with testing and to Jacob Butcher and Michael Van De

26

Vanter for their help and patience during enumerable debugging sessions

and design meetings.

References

[1] Allegro COMMON LISP User Guide, Franz Inc., January 1988.

[2] Robert A. Ballance and Michael L. Van De Vanter. Pan I: An Introduc­

tion for Users. Technical Report 88/410, Computer Science Division,

UC Berkeley, March 1988.

[3] Robert A. Ballance, Michael L. Van De Vanter and Susan L. Graham.

The Architecture of Pan L Technical Report 88/409, Computer Science

Division, UC Berkeley, August 1987.

[4] Franz Lisp Reference Manual, Franz Inc., March 1987.

[5] Guy L. Steele Jr., CoMMON LISP: The Language, Digital Equipment

Corporation, 1984.

A Macro Extensions

A.l Aliases defined with defnewname

Allegro Franz

array-total-size vsize

copy-tree copy

copy-list copy

aref vref

floor •quo
force-output drain

symbol-function getd
excl::pointer-to-fixnum maknum

excl:fixnump fixp

excl:if* if

27

A.2 General Macros

(defmacro defconstant
(symbol value aoptional (documentation nil doc?))

(if doc?
'(eval-when (compile load eval)

(putprop ',symbol ,documentation 'documentation)
(defvar ,symbol ,value))

'(eval-when (compile load eval)
(defvar ,symbol ,value))))

(defmacro defparameter
(symbol value aoptional (documentation nil doc?))

(if doc?
'(eval-when (compile load eval)

(putprop ',symbol ,documentation 'documentation)
(defvar ,symbol ,value))

'(eval-when (compile load eval)
(defvar ,symbol ,value))))

(defmacro defnevname (new-function-name old-function-name)
'(defmacro ,new-function-name (arest args)

'(,',old-function-name .~args)))

(defmacro byte (size position)
'(list :byte ,size ,position))

(defmacro byte-position (byte)
'(third ,byte))

(defmacro byte-size (byte)
'(second ,byte))

(defmacro ldb (bytespec integer)
(let ((byte-spec (car (errset (eval bytespec)))))

(if (and bytespec (eq (first byte-spec) :byte))
(let ((position (byte-position byte-spec))

(size (byte-size byte-spec)))
(let ((byte-mask (lsh (lognot (lsh -1 size)) position)))

'(lsh (logand ,integer ,byte-mask) ,(-position))))
(cli:error "%ldb called with illegal bytespec argument."))))

28

(defmacro dpb (newbyte bytespec integer)
(let ((byte-spec (car (errset (eval bytespec)))))

(if (and bytespec (eq (first byte-spec) :byte))
(let ((position (byte-position byte-spec))

(size (byte-size byte-spec)))
(let ((byte-mask (lsh (lognot (lsh -1 size)) position)))

'(logior (logandc2 ,inte!er ,byte-mask)
(logand (lsh ,newbyte ,position) ,byte-mask))))

(cli:error
"%dpb called with illegal bytespec arguments."))))

;;; This macro does not support fill pointers.
(defmacro make-array (dimension tkey (element-type t)

(initial-element nil)
(fill-pointer nil))

(multiple-value-bind (success? type)
(erro.rset (eval element-type))

(if success?
(cond ((equal type 't)

'(new-vector ,dimension ,initial-element))
((equal type 'fixnum)

'(new-vectori-long ,dimension))
((equal type 'string-char)

'(new-vectori-byte ,dimension))
((equal type '(unsigned-byte 32))

'(new-vectori-long ,dimension))
((equal type '(unsigned-byte 16))

'(new-vectori-word ,dimension))
((equal type '(unsigned-byte 8))

'(new-vectori-byte ,dimension))
((equal type '(signed-byte 32))
'(new-vectori-long ,dimension))

((equal type '(signed-byte 16))
'(new-vectori-word ,dimension))

((equal type '(signed-byte 8))
'(new-vectori-byte ,dimension))

(t (cli:error
"%Error: make-array element type unknown")))

(cli:error
"%Error: make-array type argument evaluation error"))))

(defun integerp (sexpr)
(or (fixp sexpr)

(bigp sexpr)))

29

(defun characterp (sexpr)
(fixp sexpr))

(defmacro merge (result-type seql seq2 comp-pred)
'(insert (car ,seql) ,seq2 ,comp-pred t))

(defmacro namestring (pathname)
'(string ,pathname))

(defun string-upcase (string)
(string (maknam (mapcar #'char-upcase

(aexploden string)))))

(defun string-downcase (string)
(string (maknam (mapcar #'char-downcase

(aexploden string)))))

(defin schar (string index)
(getcharn string (1+ index)))

(defmacro <=! (a b toptional c)
(if c

'(let ((%temp ,b))
(and (<=t ,a %temp)

(<=t %temp ,c)))
'(<=t ,a ,b)))

(defmacro <! (a b toptional c)
(if c

'(let ((%temp ,b))
(and (<t ,a %temp)

(<t %temp ,c)))
'(<t ,a ,b)))

(defmacro char-code (char)
'(logand ,char #xff))

(defmacro code-char (char)
'(logand ,char #xff))

30

(defun standard-char-p (char)
(let ((code (char-code char)))

(and (eql code char)
(or (<! 31 code 127)

(= code #\newline)))))

(defun graphic-char-p (char)
(<! 31

(char-code char)
127))

(defun string-char-p (char)
(<! -1

(char-code char)
256))

(defun alpha-char-p (char)
(let ((m (char-code char)))

(or (<=! #\A m #\Z)
(<=! #\a m #\z))))

(defun upper-case-p (char)
(<=! #\A

(char-code char)
#\Z))

(defun lower-case-p (char)
(<=! #\a

(char-code char)
#\z))

(defun digit-char-p (char toptional (radix 10))
(unless (<=! 0 radix 36)

(error .. -sis an illegal input radix." radix))
(let* ((code (char-code char))

(value (cond ((<=! #\0 code #\9) (- code #\0))
((<=! #\A code #\Z) (- code (- #\A 10)))
((<=! #\a code #\z) (- code (- #\a 10))))))

(if (<! value radix)
value
nil)))

31

(defun both-case-p (char)
(let ((m (char-code char)))
(or (<=! #\A m #\Z)

(<=! #\a m #\z))))

(defun directory-namestring (name)
(let ((rname (nreverse (aexploden (tilde-expand name)))))

(implodes (nreverse (memq #\/ rname)))))

(defun alphanumericp (char)
(let ((m (char-code char)))

(or (<=! #\0 m #\9)
(<=! #\A m #\Z)
(<=! #\a m #\z))))

(defmacro char= (c1 c2)
'(=t ,c1 ,c2))

(defmacro char/= (c1 c2)
'(not (char= ,c1 ,c2)))

(defmacro char< (c1 c2)
'(<! ,c1 ,c2))

(defmacro char<= (c1 c2)
'(<=! ,c1 ,c2))

(defmacro char> (c1 c2)
'(<! ,c2 ,c1))

(defmacro char>= (c1 c2)
'(<=! ,c2 ,c1))

(defun char-upcase (char)
(it (lower-case-p char)

(logxor char 32)
char))

(defun char-downcase (char)
(if (upper-case-p char)

(logxor char 32)
char))

32

(defmacro throw (tag result)
1 (let ((%tag ,tag)

(%result ,result))
(when •throw-hook*

(funcall •throw-hook• %tag %result))
(lisp:•throw %tag ~~esult)))

(defmacro catch (tag tbody forms)
1 (lisp:•catch ,tag

(progn .~forms)))

(defmacro tagbody (tbody body)
'(prog ()

.~body

(return nil)))

(defmacro block (name tbody body)
'(prog (,name)

.~body

,name
(return ,name)))

(defmacro return-from (block-name toptional (return-form nil))
1 (progn (setf ,block-name ,return-form)

(go ,block-name)))

(defmacro with-open-file ((stream-var trest open-args)
tbody body)

'(let ((,stream-var (open .~open-args)))
(unwind-protect (progn .~body)

(when ,stream-var
(close ,stream-var)))))

(defmacro errorset (form)
'(let ((~~esult (errset (multiple-value-list ,form) nil)))

(if %result
(apply #'values t (car %result))
nil)))

33

• a

(defun open (pathname trest options)
(let ((direction :output)

(existence :unspecified))
(do ((options options (cddr options)))

((null options))
(let ((option-arg (cadr options)))

(case (car options)
(:direction (setf direction option-arg))
(:if-exists (setf existence option-arg))
(:if-not-exists (setf existence option-arg)))))

(case direction
(:probe (probef pathname))
(:input (case existence

(:unspecified (infile pathname))
(t (cli:error "%with-open-file :exists error-%"))))

(:output (case existence
(:append (outfile pathname "a"))
(:unspecified (outfile pathname))
(t (cli:error "%with-open-file :exists error-%"))))

(t (cli:error "%with-open-file :direction error-%")))))

(defmacro read-char (toptional (input-stream 'piport)
(eof-error-p nil)
(eof-value nil))

'(let ((%char (tyi ,input-stream)))
(if (minusp %char)

,eof-value
%char)))

(defmacro pathname (arg)
'(string , arg))

(defmacro peek-char (toptional (peek-type nil)
(input-stream 'piport)
(eof-error-p nil)
(eof-value nil))

'(let ((%char (tyipeek ,input-stream)))
(if (minusp %char)

,eof-value
%char)))

34

(defmacro read-line (toptional (input-stream 'piport)
(eof-error-p nil)
(eof-value nil))

'(let ((%char-list '())
(%char))

(while (setf %char
(read-char ,input-stream ,eof-error-p))

(when (eq %char #\newline)
(return))

(push %char %char-list))
(if %char-list

(values (symbol-name (implode (nreverse %char-list)))
(not %char))

,eof-value)))

(defun file-namestring (name)
(let ((tname (nreverse (aexploden (tilde-expand name)))))

(implodes (nreverse (ldiff tname (memq #\/ tname))))))

(defmacro incf (loc toptional (amount 1))
'(setf ,loc (+ ,loc ,amount)))

(defmacro decf (loc toptional (amount 1))
'(setf ,loc (- ,loc ,amount)))

•••
I I I

This is a COMMON LISP version of position, except that
the number returned will be one higher due the start
position for Franz arrays.o

(defmacro position (element sequence)
'(char-index ,sequence ,element))

(defmacro read-from-string (str)
'(readlist (explodec ,str)))

; ;; This is a franz definition of CL's assert. It does
, 1 , not support the optional second argument ({place}•).
(defmacro assert (test-form toptional place trest args)

;; don't support CL {place} option, throw it away second arg
(if args

'(unless ,test-form
(cli:error .~args))

'(unless ,test-form
(cli:error "Assertion failure"))))

35

